Refactoring bacteriophage T7

نویسندگان

  • Leon Y Chan
  • Sriram Kosuri
  • Drew Endy
چکیده

Natural biological systems are selected by evolution to continue to exist and evolve. Evolution likely gives rise to complicated systems that are difficult to understand and manipulate. Here, we redesign the genome of a natural biological system, bacteriophage T7, in order to specify an engineered surrogate that, if viable, would be easier to study and extend. Our initial design goals were to physically separate and enable unique manipulation of primary genetic elements. Implicit in our design are the hypotheses that overlapping genetic elements are, in aggregate, nonessential for T7 viability and that our models for the functions encoded by elements are sufficient. To test our initial design, we replaced the left 11,515 base pairs (bp) of the 39,937 bp wild-type genome with 12,179 bp of engineered DNA. The resulting chimeric genome encodes a viable bacteriophage that appears to maintain key features of the original while being simpler to model and easier to manipulate. The viability of our initial design suggests that the genomes encoding natural biological systems can be systematically redesigned and built anew in service of scientific understanding or human intention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation, Models, and Refactoring of Bacteriophage T7 Gene Expression

Our understanding of why biological systems are designed in a particular way would benefit from biophysically-realistic models that can make accurate predictions on the time-evolution of molecular events given arbitrary arrangements of genetic components. This thesis is focused on constructing such models for gene expression during bacteriophage T7 infection. T7 gene expression is a particularl...

متن کامل

Equal incorporation of both parental bacteriophage T7 deoxyribonucleic acid strands into intracellular concatemeric deoxyribonucleic acid.

After infection of Escherichia coli B with radiolabeled T7 bacteriophage, the parental deoxyribonucleic acid label was found in both polynucleotide chains of the intracellular T7 concatemer.

متن کامل

Suppression of a mutation in gene 3 of bacteriophage T7 (T7 endonuclease I) by mutations in phage and host polynucleotide ligase.

Bacteriophage T7 bearing amber mutations in both gene 1.3 (T7 DNA ligase) and gene 3 (T7 endonuclease I) are viable when grown in suppressor-negative, ligase-negative hosts. This is evidenced by a high plating efficiency and a large burst size compared to the single mutants. These findings may be explained by a limited destruction of cellular DNA by the double mutant.

متن کامل

Involvement of DNA gyrase in bacteriophage T7 growth.

We have found that the burst size of bacteriophage T7 was decreased in two Escherichia coli temperature-sensitive gyrase mutants incubated at the restrictive temperature. This reduction in burst size indicates that gyrase may be required for T7 growth.

متن کامل

Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress.

A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Systems Biology

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2005